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Foreword 

The National Standard Reference Data System is a Government-wide effort to provide for the 
technical community of the United States effective access to t~e quantitative data of physical 
science, critically evaluated and compiled for convenience, and readily accessible through a variety 
of distribution channels. The System was established in 1963 by action of the President's Office of 
Science and Technology and the Federal Council for Science and Technology. 

The responsibility to administer the System was assigned to the National Bureau of Standards 
and an Office of Standard Reference Data was set up at the Bureau for this purpose. Since 1963, 
this Office has developed systematic plans for meeting high-priority needs for reliable reference 
data. It has undertaken to coordinate and integrate existing data evaluation and compilation 
activities (primarily those under sponsorship of Federal agencies) into a comprehensive program, 
supplementing and' expanding technical coverage when necessary, establishing and maintaining 
standards for the output of the participating groups, and providing mechanisms for the dissemina­
tion of the output as required. 

The System now comprises a complex of data centers and other activities, carried on in Gov­
ernment agencies, academic institutions, and nongovernmental laboratories. The independent 
operational status of existing critical data projects is maintained and encouraged. Data centers 
that are components of the NSRDS produce compilations of critically evaluated data, critical 
reviews of the state of quantitative knowledge in specialized areas, and computations of useful 
functions derived from standard reference data. In addition, the centers and projects establish 
criteria for evaluation and compilation of data and make recommendations on needed modifications 
or extensions of experimental techniques. 

Data publications of the NSRDS take a variety of physical forms, including books, pamphlets, 
loose-leaf sheets and computer tapes. While most of the compilations have been issued by the 
Government Printing Office, several have appeared in scientific journals. Under some circum­
stances, private publishing houses are regarded as appropriate primary dissemination mechanisms. 

The technical scope of the NSRDS is indicated by the principal categories of data compilation 
projects now active or being planned: nuclear properties, atomic and molecular properties, solid 
state properties, thermodynamic and transport properties, chemical kinetics, colloid and surface 
properties, and mechanical properties. 

An important aspect of the NSRDS is the advice and planning assistance which the National 
Research Council of the National Academy of Sciences-National Academy of Engineering pro­
vides. These services are organized under an overall Review Committee which considers the 
program as a whole and makes recommendations on policy, long-term planning, and international 
collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to 
examine major portions of the program, assign relative priorities, and identify specific key prob­
lems in need of further attention. For selected specific topics, the Advisory Panels sponsor sub­
panels which make detailed studies of users' needs, the present state of knowledge, and existing 
data resources as a basis for recommending one or more data compilation activities. This assembly 
of advisory services contributes greatly to the guidance of NSRDS activities. 

The NSRDS-NBS series of publications is intended primarily to include evaluated reference 
data and critical reviews of long-term interest to the scientific and technical community. 

A. V. ASTIN, Director. 
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Nomenclature, Conversions, Physical Constants, and Fixed Points for Argon 

Nomenclature 

P - absolute pressure 
T - absolute temperature 
V - specific volume 
p - density = 1/V 
R - universal gas constant 
Z - compressibility factor = PV/RT 
U - specific internal energy 
H - specific enthalpy 
S - specific entropy 
Cp - specific heat capacity at constant pressure 
Cv - specific heat capacity at constant volume 
p. - louIe-Thomson coefficient 
B - second virial coefficient 
G - Gibbs function 
A - Helmholtz function 
A - residual work content 
E - potential energy 
r - distance of molecular separation 
er - molecular separation for E = 0 
€ - Maximum energy of attraction 
k - Boltzmann constant 
N - Avogadro constant 
r* - reduced distance = r/er 
T* - reduced temperature = kT/€ 
bo - reducing parameter = 21TNer3/3 
B* - reduced second virial coefficient = B/ bo 
po - distance between cores for minimum energy 
h - Planck constant 
a - radius of core 
m - mass of molecule 
A * - de Broglie wave length = h/(er~) 
Superscripts: 
o - ideal gas property 
* - real or ideal gas property at very low pres­

sures (P approaching 0) except as noted in 
symbols above 

- saturated liquid property 
g - saturated vapor property 

v 

Subscripts: 
c - critical point 
o - reference state property 
sat - property at saturation 
t - triple point 
expr- experimentally determined property value 
calc - calculated property value 
melt - melting line property 
Subscripts on partial derivatives and integrals 
indicate which property is being held constant. 

Conversions and Physical Constants 

1 thermochemical calorie = 4.184 joules 
0° C = 273.15 K (Triple point of water = 273.16 K) 
Gas constant, R=0.0820535liter-atm/g-mole K 
Planck constant, h = 6.6256 X 10-34 joule-sec 
Boltzmann constant, k= 1.38054 X 10-23 joule/K 
A vogadro constant, N = 6.02252 X 1023 per mole 
Molecular weight of argon = 39.948gfg-mole (based 
on the carbon-12 scale where the isotope CI2 
= 12.000 ... ). 

Fixed Points for Argon 

Critical pressure = 48.34* atmospheres 
Critical density = 300.4* Amagat = 13.41 g-mole/liter 
Critical temperature = 150.86* K 
Normal boiling point = 87.280±0.015** K 
Triple point temperature = 83.80** K 
Triple point pressure = 0.68005** atmospheres. 

• These fixed points are those listed by Michels et a1. [11. Some recent investigations 
indicate the critical temperature and pressure may be in error. However. these values 
appear to be the best estimat.e available at this writing. In reference [II the Amagat 
unit of density is given as 4.4647 X 10 -$ moles/em', based on the chemical scale. In 
this work the physical scale is used, resulting in an Amagat density unit of 4.4659 X 10-$ 
moles/em', 

•• These fixed points are those listed by Ziegler et al. [2J. The value of the normal 
boiling point calcuJatC?d by the vapor pressure equation developed in this work agrees 
with that listed by Ziegler [2J. The value of the triple point lemperature calculated by 
the vapor pressure equation developed in this work deviates from Ziegler's reported 
value by 0.0045 percent. 



Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures 
to 1000 Atmospheres 

A. L. Gosman, R. D. McCarty, and J. G. Hust 

Tabular values of density, internal energy, enthalpy, and entropy of liquid and gaseous argon are 
presented for temperatures from 83.8 to 300 K at pressures of 0.01 to 1000 atmospheres. Diagrams of 
specific heats, compressibility factor , and entropy are included. The properties presented are calculated 
from an equation of state which was fitted to experimental P- p-T data from the world literature. Ex­
tensive comparisons were made between the equation of state and the experimental data, and deviation 
plots are presented. The second virial coefficient and Joule-Thomson inversion curve were also cal­
culated and comparisons made with values from other sources. A vapor pressure equation which covers 
the range from the triple point to the critical point is also given. 

Key Words: Argon; compressibility factor; enthalpy; entropy; equation of state ; internal energy; 
Joule·Thomson coefficient; P-V-T; specific heat ; vapor pressure; virial coefficient. 

1. Introduction 

In recent years technical interest in pure argon 
has greatly accelerated. This accelerated interest 
has been evidenced by a demand which has more 
than sextupled in 12 years. United States pro­
duction has continued to increase from less than 
200,000,000 cubic feet per year in 1953 to almost 
1,300,000,000 cubic feet in 1965, with about 80 
percent being shipped in liquid form [3].1 

In addition, scientific interest in argon has arisen 
because of its characteristically "ideal" structural 
makeup. That is, argon is monatomic, with the 
relatively uncomplicated interatomic forces being 
approximated by spherically symmetric, nonpolar 
models. In addition, the quantum effects on argon 
are relatively small. Although helium and neon 
might be considered to be more "ideal" fluids 
from the standpoint of simple models, the quantum 
effects are relatively large for these two fluids as 
compared to argon. For these reasons argon might 
be expected to permit a more direct classical in­
vestigation and experimental verification of the 
theoretical model predictions. 

In view of the increased activity in cryogenic 
engineering and physics, it was apparent that a 
set of consistent thermodynamic properties , over 
a relatively larg!,! region of the thermodynamic 
surface, was needed. Although many investigators 
had published data for the thermodynamic prop­
erties of argon, each tabulation was, in general, 
limited to the property range of interest of the 
specific investigator, and large gaps in the data 
existed. In addition, where the ranges of data did 

I Figures in brackets indicate the literature references (sec. 17), 
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overlap, there was a substantial degree of incon­
sistency in some instances. For these reasons, this 
laboratory undertook the program of making a 
critical analysis of the thermodynamic properties 
of argon in the cryogenic temperature range, in­
cluding the low temperature - high density region_ 

In recent years, much of the technical design 
and synthesis has been done with the aid of high 
speed digital computers. Thus the need for an an­
alytical equation of state has become quite sig­
nificant when compared with the use of tables and 
charts of thermodynamic properties. Many equa­
tions of state have been proposed in the literature, 
each with its own peculiar strengths and weak­
nesses. Some of these equations represented the 
data in certain regions of the thermodynamic 
surface, but were quite inadequate in other regions 
of the surface. Therefore, the need was established 
for a single equation of state which could accurately 
and consistently represent the data for both the 
liquid and vapor phases with a consistent transi­
tion from the low temperature - high density region 
to the low density region. 

In the case of argon, it is difficult to assess the 
general overall adequacy of an equation of state in 
terms of deviations from the experimental P-V-T 
surface. That is, due to the inconsistency of some 
of the overlapping experimental data sources, there 
is no single experimental P-V-T surface which can 
be used as a reference. Also, the significance of 
the deviations is wholly dependent upon the var­
iable chosen for the comparison and the specific 
region of the thermodynamic surface which is 
being studied. In certain regions of the surface, 



large pressure deviations are caused by insignificant 
density errors, while in other regions the reverse is 
true. In general, -the equation of state presented in 
section 7 represents the different sources of experi­
mental data to within the accuracy of the data, 
except at the higher temperatures on the coexist­
ence boundary and the critical region where the 
deviations are, in a few cases, greater than the 
accuracy of the data. Numerous deviation plots are 
presented (sec. 8) in a manner which permits the 
comparison of the equation of state with each of 
the experimental data sources over the various 
regions of the thermodynamic surface. 

As a part of the critical analysis, it was deemed 
necessary to develop a vapor pressure equation 
which would accurately represent the experimental 
vapor pressure data from the triple point to the 
critical point. This vapor pressure equation could 
then be used, in conjunction with the equation of 
state, to calculate some of the derived thermo­
dynamic properties such as enthalpy, entropy, etc. 

Thus it was concluded that a critical analysis of 
thermodynamic properties of argon was to be made 
for temperatures to about 300 K and for pressures 
to about 1000 atm wherever the experimental data 
permitted this pressure range. 

2. Survey of the Literature 

A comprehensive search of the literature re­
sulted in a bibliography of about 425 references. 
The temperatures which were included in this 
search covered the range from 0 to 300 K. In addi­
tion to manual-reviewing techniques, the data re­
trieval personnel and the computerized search 
techniques of the Cryogenic Data Center of the 
National Bureau of Standards at Boulder, Colo. 
were utilized. As a result, a bibliography on the 
thermophysical properties of argon [4] was prepared 
and published in 1964. The literature search was 
continually updated so that current data were 
rapidly assimilated. 

From this literature search, the most appropriate 
P-V-T data, vapor pressure data, coexistence 
density data, and fixed point data were selected 
for consideration and evaluation. In addition, virial 
coefficient data, loule-Thomson data, specific heat 
data, and information on equations of state were 
acquired and considered. 

Although many equations of state were pre­
sented in the literature, none of these equations 
appeared to have been developed to adequately 
represent the data for argon for temperatures from 
below the normal boiling point to twice the critical 
temperature for the gaseous, dense gas, and liquid 
regions. Hirschfelder et al. [5] developed a gen­
eralized equation of state which arbitrarily divided 
the P-V-T surface into three regions, namely, gas, 
dense gas, and liquid regions. For these three 
regions, Hirschfelder et al. [5] developed three 
equations in such a manner that discontinuities 
at the junction of these regions were avoided. 

Appearing in the literature were other tech­
niques for representing the P-V-T data. For some 
fluids, where perhaps one source of highly precise 

data were available, the P-V-T data could be repre­
sented by polynomials along isotherms or poly­
nomials along isochores. One such isothermal 
representation is the virial equation of state. 

The virial equation of state is based on funda­
mental grounds in that it can be derived from 
fundamental statistical mechanics. Furthermore, 
in principle, this equation of state depends upon a 
very small number of parameters in that once one 
characterizes the potential function (by assigning 
values to its parameters) all virial coefficients can 
be calculated. In practice, however, only the second 
virial coefficient has been calculated properly. The 
third virial has been calculated in the approximation 
where nonadditivity is neglected for a small number 
of functions. All higher virials have really not been 
calculated except for the fourth and fifth virials for 
the hard sphere and (12-6) potentials. Thus, in 
actual practice, a viri.al equation of. ~tate is, in 
effect, an equation of state with a number of param­
eters equal to the number of virials times the num­
ber of isotherms (perhaps minus the second virials). 
Thus, Michels et al. [1,6] equation of state remains 
a 100 parameter representation of his 19 isotherms 
until higher virials can be properly calculated from 
potential functions. 

In addition, where multiple sets of data exist 
(as with argon) at odd temperature and density 
spacings, a complete correlation at all points of the 
P-V-T surface becomes very difficult with these 
polynomials. That is, if isothermal polynomials are 
used, then each set of coefficients is valid only for 
the one specific isotherm which was fitted. If a 
point on the P-V-T surface lies between two of the 
fitted isotherms, then other interpolative tech­
niques must be used to obtain the P-V-T coordi­
nates of this point. 

3. Summary of P-Y-T Data 

Published experimental P-V-T data were re­
viewed and examined. As a result, the P-V-T data 
which were considered for use in this compilation 
were distributed as shown in table l. 

Evaluation of the experimental P-V-T data of 
van Itterbeek, Verbeke, and Staes [9] revealed 

2 

slight inconsistencies. Private communication 
from Verbeke [12] indicated that there were typo­
graphical errors in the original paper [9]. The new 
values given by Verbeke [12] were then used In 
this work. 

• 



TABLE 1. Summary ofP-V-T data 

Number Temperature Pressure Source 
of points or volume range (aim) 

8 -140 'c 6 t6 160 Michels, Leveh, and de Graaff [II 
10 -135 7 to 200 [IJ 
13 -130 7 to 240 [IJ 
17 -125 7 to 280 [IJ 
20 -122.5 7 to 300 [11 
24 -120 7 to 320 [I] 
26 -110 8 to 400 [IJ 
26 -100 8 to 480 [IJ 
26 -85 9 to 600 [11 
27 -70 6 to 700 [II 
27 -50 7 to 850 pi 
28 -25 7 to 1030 IJ 
41 Near coexjslence region [IJ 

48 o · C 19 to 930 Michels. Wijker. and Wijker [6J 
46 25 20 to 870 [61 
15 SO to 150·C 27 to 750 [61 
7 -183.02 ·C 26 to 165 Rogovaya and Kaganer [71 
8 -ISO.08 25 to 185 [71 
6 -135.03 72 to 196 [7J 
6 -120.02 73 to 166 [71 
7 -1l0.04 47 to 176 [7J 
9 -100.01 49 to 192 [7] 
7 -90.03 SO to 190 [71 
8 -75.03 26 to 194 [71 
8 -49.93 28 to 197 [71 
8 -24.98 27 to 184 [71 

8 86.63 K 17 to 90 van hterbeek and Verbeke [81 
14 87.91 13 to 147 [8J 
14 89.13 22 to ISO [81 
14 90.55 18 to 146 (8) 

8 90.15 K 10 to 242 van Itterbeek, Verbeke. and Staes [91 
12 96.99 II to 280 [91 
12 108.18 19 to 260 [9] 
8 117.10 16 to 284 [91 
7 127.05 30 to 290 [91 
7 130.85 21 to 266 [9J 

II 134.40 30 to 258 [91 
16 136.02 40 to 257 [91 
14 138.98 33 to 285 [91 
11 146.63 58 to 248 [91 
9 148.25 45 to 288 [9J 

TABLE 1. Summary ofP-V-T data-Continued 

Number Temperature Pressure Source 
of points or volume range (aim) 

I 93.15 K 320 van Wilzenburg [10\ 
5 98.15 78 to 350 [I OJ 
7 103.15 76 to 330 [10] 

12 123.15 303 to 1042 [10] 
12 128.15 302 to 1908 [101 
15 133.15 207 to 1941 (10) 

7 108.15 322 to 1210 [101 
3 113.15 74 to 967 [101 

10 118.15 296 to 1590 [10) 
13 138.15 315 to 1957 [lOJ 
16 148.15 66 to 1902 [10] 
13 153.15 315 to 1925 [10] 

14 29.2 cm'/g·mol 21 to 488 Walker [11] 
15 29.6 25 to 494 [ll] 
17 29.8 43 to 520 [11] 
20 3L3 39 to 500 [ll] 
17 33.8 16 to 515 [Ill 
24 35.7 24 to 500 [ll] 
22 37.8 27 to 506 [llJ 
16 39.5 34 to 286 [lll 
16 41.2 34 to 483 Ill] 
23 42.0 38 to 506 11) 
24 43.6 45 to 316 [11] 
25 45.5 43 to 272 [llJ 
14 SO.7 45 to 139 [IIJ 
22 58.3 61 to 209 [11] 
13 66.5 45 to 122 Ill) 

A preliminary comparison of Walker's [11] ex­
perimental data showed an inconsistency in the 
published density values. Private communication 
from Walker [13] indicated that there were errors 
in the density values quoted in the original paper 
[11]. A more complete discussion of Walker's [11] 
data will be given later. 

4. Summ.ary of Vapor Pressure Data 

Some of the vapor pressure data which are 
available in the literature were published in the 
early part of the century_ Wherever possible, these 
early data were replaced by more recent data if 
there appeared to be sufficient evidence that the 
recent data were of higher reliability. 

Modern experimental instrumentation and tech­
niques generally permit a higher order of accuracy 
and precision than did the earlier work. In addi­
tion, the temperature scales and basic standards 
which were used in much of the older work were 
substantially different from those used today. Some 
of the earlier work may have been conducted with 
variations in the temperature scales of as much as 
0_06 deg. Much of the time, the early investigator 
did not clearly state which temperature scale was 
in current use and the results therefore lead to 
confusion and uncertainty. 

As a result of the above considerations, the vapor 
pressure data which were selected for further 
analysis are shown in table 2. 

In addition to the vapor pressure data shown 
above, two sources of coexistence or saturation 
densities were examined. These are indicated in 
table 3. 

3 

Number 
of points 

23 

17 

23 

6 

34 

9 

Number 
of points 

23 

16 

TABLE 2. Summary of vapor pressure data 

Temperalure 
range-K 

90 to ISO 

86 to ISO 

117 to ISO 

84 to 87 

85 to 148 

129 to 147 

Source 

van dec Waals Laboratory data reported by 
Clark, Din, Robb, Michels . Wassenaar, and 
Zwietering [141. 

British Oxygen Co. Ltd. data reported by Clark 
et.1. [14]. 

Michels, Leveh, and de Graaff [l]. 

Flubacher, Leadbetter. and Morrison [151. 

van ltterbeek, de Boelpaep, Verbeke, Theeuwes. 
and Staes [16]. 

van hterbeek, Verbeke, and Staes [91. 

TABLE 3. Coexistence density data 

Temperature 
range-K 

117-150 

9(H48 

Source 

Michels , Levelt, and de Gr.aff [I). 

Mathias, Onnes, and Crommelin [17J. 



5. Saturated Liquid Density 

In this analysis,. it frequently was found con­
venient to have an expression which could be used 
to predict approximate values for the density of the 
saturated liquid. This type of expression was not 
needed for the determination of the equation of 
state or the calculation of the thermodynamic prop­
erties. However, it would prove useful in the pre­
liminary analysis, where saturation data were 
evaluated for consistency. Such an expression also 
would be useful for obtaining initial approximations 
in iterative solutions of the equation of state. For 
these purposes a simple expression, based upon 
the principle of corresponding states, was de­
veloped. 

Using the critical point as the reducing parameter, 
the principle of corresponding states assumes a 
universal function which may be expressed as 

(1) 

where 

However, in the coexistence region where the 
saturated liquid and saturated vapor are in mutual 
equilibrium, the pressure and temperature are 
not independent properties. Thus if eq (1) were 
examined in accordance with the thermodynamic 
requirements of the coexistence line, it may be 
deduced that there also exists a 'universal function 
for the saturated liquid such that 

(2) 

Using a coordinate system of reduced tempera­
ture versus reduced density, Guggenheim [18] 
plotted experimental data points for a number of 
pure substances and verified the universal form of 
eq (2). For the data which Guggenheim [18] had 
available, he found that the coexistence line could 
be adequately expressed by the relationships 

Ei:±J!!. 
2 

= 1 + a(1 - Tr) 
pc 

(3) 

and 

(4) 

where a and b are constants. Equation (3) repre­
sents the "law" of the rectilinear diameter which 
states that the average of the saturated liquid and 
saturated vapor densities appears as a straight line 
on ·the reduced coordinate system of temperature 
versus density. 

4 

Combining eqs (3) and (4) yields an equation for 
the saturated liquid density, expressed as 

plpc= 1 + a(l- Tr) + C(l- Tr)1/3 (5) 

where C = b/2. 
In order to represent the data with more accuracy 

than eq (5) permits, an expanded form of eq (5) 
was proposed. Physical requirements demand that 
the derivative 

d(Tr) 
-:dC"7(p-'-:I:-!-/p-'-c7"") = 0 at pl= pc, and Tr= 1 (6) 

Thus the possibility of an equation with the satu­
rated liquid density as a function of only integer 
powers of temperature is ruled out, since such an 
equation would not fulfill the requirements of 
eq (6). It then appears that a fractional power 
term such as the last term in eq (5) is necessary 
so that zero slope may exist at the critical point. 
An expanded form of eq (5) may then be written as 

pi/PC = L dn(l- Tr)n/3. (7) 
n=O,I ,2,3, .. . 

For eq (7) to satisfy critical point behavior, the 
coefficient do should be essentially equal to unity. 
In addition, if the derivative of eq (7) is written 

1 
(8) 

n ' L ~d,.(l-Trr3-1 
n=O, 1,2,3, .. . 

it is seen that the requirements of eq (6) are satisfied. 
In eq (7), fractional exponents other than multiples 
of 1/3 were investigated. The results showed no 
apparent advantages, and the 1/3 exponent was 
retained. 

Equation (7) was fitted to the saturated liquid 
data by least square techniques. A series of suc­
cessive fits was performed with increasing values 
of "n." Examination of these fits revealed a con­
tinued decrease in the deviations between the 
calculated density and experimental density until 
the fit with n = 6. For fits with "n" greater than 
six, the results appeared to be approaching the 
precision of the data, and, therefore, the final form 
for the equation was selected to be 

6 
pi/pc = L dnKn (9) 

n=O 

where K = (1 - Tr )1/3 and Tr is calculated from 
temperatures in Kelvin units. 

An examination of the saturated liquid density 
data demonstrates that the data from Michels et al. 
[1] and Mathias et al. [17] are consistent with each 
other, with Michels' data showing somewhat more 
precision. This may be seen in figure 1, where 



percent density deviation is plotted as a function 
of temperature. 
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FIGURE 1. Deviations between calculated (eq (9)) saturation 
liquid densities and experimental saturated liquid densities. 

In figure 1, it is seen that both sets of data 
exhibit almost the same characteristics with the 
Mathias data showing a wider envelope of density 
deviations. The maximum deviation of the saturated 
liquid density data from that calculated by eq (9) 
is 0.32 percent which occurs within 1/2 deg of the 
critical point. The mean of the absolute values of 

density deviations for Michels' data is 0.099 per· 
cent, and for the data of Mathias, 0.098 percent. 

However, the three Michels' data points which 
exhibit the largest density deviations are all within 
about a degree and a half of the critical point where 
the experimental determination of saturated liquid 
densities becomes most difficult. If these three 
points are not included, then the mean density 
deviation is 0.039 percent. On the other hand, the 
single data point of the Mathias data which exhibits 
the maximum deviation is within about two and a 
half degrees of the critical point. If this point is 
omitted, the mean density deviation for the Mathias 
data is 0.076 percent. 

With these comparisons, it can be concluded that 
eq (9) adequately represents the data, with precision 
approaching the precision of the data. In addition, 
the data of Michels et al. [1] display a precision 
about twice that of Mathias et al. [17]. 

The coefficients of eq (9) which resulted from the 
fit with n = 6 are shown in table 4. 

TABLE 4 . Coefficients for saturated liquid densities for eq (9) 

Temperature in K, coefficients are dimensionless 

do = 0,99995448 
d, = 0.47354891 
d. = 11.238328 
d, =-43.741090 

<4 =91.361470 
do = - 93. 713992 
de = 37 .769045 

Use of the coefficients in table 4 produces a 
root-mean-square deviation in pi/pc of 0.002 for the 
data considered. 

6. Vapor Pressure 

The purpose of developing a vapor pressure 
equation was twofold. When used in conjunction 
with an independently obtained equation of state, 
the vapor pressure equation could be used to define 
the coexistence boundary. Also, the vapor pressure 
equation could be used in conjunction with the 
equation of state to calculate some of the derived 
thermodynamic properties. 

The coexistence boundary may also be defined 
without the use of a vapor pressure equation, as 
discussed in section U. However, this method 
requires a sufficient number of highly precise 
experimental P-V-T data points along the boundary. 
Since saturation densities are difficult to measure 
with a high degree of precision, and since there 
was only one source of satisfactory coexistence 
data, it was difficult to perform a critical evalua­
tion of this data for the purpose of establishing 
the coexistence boundary. 

Instead, there was in the literature a relatively 
large number of experimental poT data points along 
the coexistence boundary. With these data a vapor 
pressure equation could be developed. An examina­
tion of the literature indicated the existence of 
many vapor pressure equations which have been 

- -
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used. Some of these have been studied, compared, 
and listed by Stewart [19]. 

For this evaluation of argon, a vapor pressure 
equation was developed which would represent 
the argon data with sufficient precision and at the 
same time permit consistency with the equation 
of state at the critical point. 

The argon vapor pressure equation was developed 
from the application of the Clapeyron equation 
to a first order phase transition. The Clapeyron 
equation is 

( 
dP) Hg-Hl 
dT sat = -=T:-:-( =vg-----=-:-VI:7"r (10) 

If appropriate expressions for the changes 10 

enthalpy and volume as functions of temperature 
and pressure are substituted in eq (10), the equa­
tion can then be integrated to give the desired 
vapor pressure equation. Some of the simpler and 
more commonly used vapor pressure equations 
were obtained with the assumptions of 



The first assumption of eq (11) is valid only for 
coexistence states which are considerably below 
the critical point. In addition, figures 2 and 3 
illustrate that the second and third assumptions 
of eq (11) are in substantial error. 

"3: . 
'" x 

Solid Line is Physical Behavior. 

Dashed Line is Equation (2). 

TEMPERATURE 

FIGURE 2. Latent heat of vaporization as a function of 
temperature. 

Therefore, for this work on argon, the following 
two approximations were proposed: 

and 

(13) 

The approximations suggested by eqs (12) and (13) 
are compared with the assumptions of eq (11) and 
are shown in figures 2 and 3. 

Figure 2 illustrates a typical plot of the latent 
heat of vaporization as a function of temperature. 
It is observed that the third assumption of eq (11), 
which approximates the latent heat as a constant, 
is unsatisfactory both in magnitude and in charac· 
teristic nature. It is thus proposed that eq (12) 
represent the latent heat of vaporization. Equation 
(12) is shown in figure 2 as the dashed line and is 
seen to represent more closely the characteristic 
nature of the physical behavior. The constants in 
eq (12) may be adjusted to change slightly the nature 
of the curve. Therefore, it was concluded that the 
quadratic nature of eq (12) satisfactorily represented 
the physical behavior in figure 2, and no higher de­
gree temperature terms were considered necessary. 

Figure 3 illustrates a typical plot of the volume 
of vaporization as a function of temperature. It is 
clear that the perfect gas assumption of eq (11) 
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FIGURE 3. Volume of vaporization as a function of temperature. 

becomes quite unsatisfactory as temperature in­
creases. In addition, it is noted that the charac­
teristic curvature of the perfect gas representation 
is incorrect. In figure 3, it is seen that the approxi­
mation proposed by eq (13) represents the physical 
behavior more closely and maintains the proper 
curvature for the entire temperature range. In 
addition, eq (13) permits the volume of vaporization 
to reduce to zero as the pressure approaches critical 
pressure. It should be noted that the deviations 
between the different models shown in figures 2 
and 3 are used only for purposes of illustrating 
qualitative trends and are not indicative of the 
actual deviations of the calculated· vapor pressure 
properties. 

Substitution of eqs (12) and (13) into eq (10) and 
integrating give 

In P=A/T+B In T+CT+D+EP. (14) 

Equation (14) was then the equation which was 
proposed for representing the vapor pressure data, 
with five constants to be determined by a least­
square fit to the data. 

In order to fit the vapor pressure eq (14) to 
the data, considerations were given to the ex­
permental errors in the observed data points so that 
each of the data points could be appropriately 
weighted. The weighting scheme, as described by 
Hust and McCarty [20], is outlined below. 

Let a function with "Q" variables 

for n= 1,2, ... , N (15) 



represent the set of "N" experimental data points 

where Yn is the dependent variable for the nth data 
point and Xqn is -the qth independent variable for 
the nth data point. The weighting factor is most 
usually described as the reciprocal of the variance 

1 
W=2' 

O"Y 
(17) 

which takes into account the variance of the de­
pendent variable. 

Since both the jndependent and dependent 
variables affect the final fit of the function to the 
data, the weight function for the nth data point is 
expressed as 

1 
W

n = Q (lL )2 
O"~ + L:l O"qn 

" q=l uXqn 

(18) 

Since P was chosen as the dependent variable in 
eq (14), Y becomes 

Y= In P- EP. (19) 

To obtain O"Yn for eq (18) for the nth data point, 

O"Yn = :J, O"p" = (~ - E) O"pn · (20) 

Also from eq (18) and the vapor pressure equation 
(14), 

Q (af )2 ( af )2 L aX 0" qn = aT O"T" 
q=1 QIl " 

(21) 

and 

af B A -=-+c-_ · 
aT" Tn n (22) 

If the experimental uncertainty of the nth data 
point for the qth variable, "LlXq,," , corresponds to 
a 95 percent confidence interval on the observed 
XQ7I' then the standard deviation "0" qn" is related to 
LlXq" as 

(23) 

The vapor pressure equation (14) is a function of 
pressure and temperature. Applying eq (23), gives 

20"Tn = AT" (24) 

and 

(25) 

Substituting the necessary expressions into (18), a 
weighting function for the nth data point is obtained: 
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4 
Wn=(B A02 (1 )2 . -+C-2" AT~+ --E AP~ 

T" T, P" 

(26) 

Equation (26) was then used as the weighting 
function for all of the vapor pressure data except 
the data of Clark et al. [14] . The vapor pressure data 
of Clark consisted of several hundred observations. 
The method which Clark used was a comparison of 
the vapor pressure of argon with that of oxygen as 
determined by Hoge [21], and using the latter as a 
measure of the temperature. In this manner, the 
temperatures were measured with a mercury-in­
glass manometer over most of the temperature 
range. At higher pressures, the temperature was 
measured with a copper-constantan thermocouple. 
Clark stated that the measurements were taken with 
a reproducibility of about 0.05 percent at low pres­
sures. At higher pressures he found that the temper­
ature control on his apparatus would not maintain 
the temperature constant with the same precision 
as at the lower temperatures, resulting in an un­
certainty of about 0.2 percent in pressure for a given 
temperature. 

Clark et al. [14] published a plot of deviation (from 
a fitted equation) in A log P versus log P. From this 
plot it appeared that there were about three to four 
times as many data points at low pressures than 
at pressures near the critical point. From the de­
scription of the experimental techniques used, the 
uncertainty limits, and the variable density distri­
bution of Clark's data, an arbitrary modifying func­
tion was developed to modify the weighting function 
eq (26) for Clark's data. This function, as described 
by Gosman [22], is 

1 
M= 375 0.28. 

5-y 
(27) 

Since Clark's lower temperature range included 
more data points than the high temperature range, 
and since the temperature control on Clark's ap­
paratus was less precise at the higher temperatures, 
the modifying function (27) was made to reflect the 
lower reliability at the higher temperatures. 

Equation (27) was used to modify the variance of 
the fit, so that the weighting factor for Clark's data 
resulted in 

(28) 

Using eq (28), the final weighting expression for 
Clark's data is 

(29) 

where W is the general weighting function eq (26). 
The nine vapor pressure data points of van Itter­

beek, Verbeke, and Staes [9] were not used in the 
final determination of the vapor pressure equation. 
These nine points were omitted from the final 



evaluation because, within a year of the vapor pres­
sure observations of van Itterbeek et al_ [9], a new 
set of vapor pressure data was reported by van 
Itterbeek, de Boelpaep, Verbeke, Theeuwes, and 
Staes [16] which deviated considerably from the 
earlier data [9], but appeared to be more consistent 
with the vapor pressure observations from other 
sources. 

The uncertainties in the vapor pressure data 
were estimated from the statements of the inves­
tigators, the description of the experimental pro­
cedures, the deviations between the different sets 
of data, and the apparent random deviations of 
each set of data. 

The resulting uncertainties for all of the vapor 
pressure data were estimated to be 

a: =0.00025 

tlP 
p=0.OOO25. 

Substituting eqs (30) into (26) and (29), 

w 4x 108 

and for Clark's data, 

(30) 

(31) 

(32) 

For each data point, the weighting functions 
(31) or (32) were substituted into the normal least­
square equations as shown by Hust and McCarty 
[20]. 

In addition, it was considered desirable to make 
the vapor pressure equation (14) pass through the 
critical pressure and temperature so as to be con­
sistent with the equation of state at the critical 
point. This required adding a constraining equation 
to the normal least-square equations so that the 
coefficients of the vapor pressure equation would 
satisfy the least-square criteria, as well as simul­
taneously constrain the vapor pressure equation to 
pass through the critical point. The generalized 
normal least-square equations with constraints are 
shown by Hust and McCarty [20] and Gosman [22]. 

A preliminary weighted-least-square fit with one 
constraint indicated that the low temperature data 
of van Itterbeek et al. [16] exhibited a scatter of 
about three to four times as great as the higher 
temperature data_ Since low temperature vapor 
pressure data from other investigators were avail­
able, these low temperature data of van Itterbeek 
et al. [16] were omitted from the final fit. 

The resulting fit of the vapor pressure equation 
(14) to the data is illustrated in figure 4, where the 
deviation between the temperature predicted by 
eq (14) and the experimental temperature is plotted 
as a function of pressure. 
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FIGURE 4. Deviations of vapor pressure data from eq (14). 

In figure 4, it is seen that the characteristic shape 
of all five of the deviation curves is the same, except 
for the low temperature data of van Itterbeek et al. 
[16] (which was not included in the fitted data). 
From figure 4 it is also noted that the data of van 
Itterbeek et al. [161 exhibits a pattern of generally 
wider scatter at the higher temperatures when com­
pared with the other data sources. 

The similarity in the basic shape of the deviation 
curves of filLure 4 may be interpreted to indicate a 
fundamental consistency between the selected 
vapor pressure data. The deviation curves also 
indicate the possibility of a disagreement in the 
temperature scales between the different data 
sources. This disagreement of temperature scales 
is inferred from the essentially constant shift or 
displacement between anyone of the deviation 
curves and any of the others. This displacement of 
the deviatio\1 curves exists despite the fact that an 
effolt was made to convert all of the temperature 
scales to a common thermodynamic temperature 
scale. An additional correction of less than 0.01 
deg (see sec. 9) was made to the data of Clark et al. 
[14], since he stated that his data were based on an 
ice-point temperature of 273.16 K, whereas the other 
vapor pressure data sources were based on the 
ice-point temperature of 273J5 K. 

From figure 4 it is seen that the maximum tem­
perature deviation is 0.108 deg. This particular 
point is in the Clark et al. [14] set of data and may 
be questionable since it contributes a sharp spike 
in die deviation curve. For Clark's data, the mean of 
the absolute values of the temperature deviations is 
0.0290 deg. If the single questionable data point is 
omitted, the mean deviation of Clark's data is 
0.0240 deg. For the data of Flubacher et al. [15], 



the maximum temperature deviation is 0.0174 deg, 
while the mean of the absolute values of the temper­
ature deviations is 0.0109 deg. The deviations of 
Clark et al. [14] (experiments by Michels) appear to 
oscillate slightly about the zero axis except at the 
lower temperatures where the maximum tempera­
ture deviation occurs. For the data of Clark et al. 
[14], the maximum temperature deviation is 0.0339 
deg, while the mean of the absolute values of the 
temperature deviations is 0.00925 deg. The data of 
Michels et al. [1] also exhibit a small oscillation 
with a maximum temperature deviation of 0.0309 
deg and a mean of 0.0158 deg. For the data of van 
Itterbeek et al. [16], the maximum temperature 
deviation is 0.156 deg, while the mean is 0.0484 deg. 

The summary of the deviations between the tem­
perature predicted by the vapor pressure equation 
(14) and the experimental temperature is given in 
table 5. 

TABLE 5. Summary of vapor pressure deviations 

Max. temp , 
deviation 

0.0339 
. IOS 
. 0309 
. 0174 
. 156 

Mean abs. 
temp deviation 

0.00925 
.0290 
.0158 
.0109 
.0484 

a Experiments by Michels. 

Source 

Clark el aI. [141. ' 
Clark el aI. [14J . 
Michels el aI. [IJ . 
Flubacher el aI. [l5] . 
van Illerbeek el aI. [I6J . 

By independent means, Ziegler et al. [2] obtained 
"best" values for the normal boiling point tempera-

ture and triple point temperature. It is important to 
note the deviations between the temperatures given 
by Ziegler et al. [2] and the temperatures predicted 
by the vapor pressure equation (14). The normal 
boiling point temperature given by Ziegler is 
87.280 ±O.015 K, while the normal boiling point 
temperature predicted by equation (14) is 87.2838 K. 
The triple point temperature recommended by 
Ziegler is 83.80 K, while the triple point tempera­
ture predicted by eq (14) is 83.8038 K, which 
corresponds to a temperature deviation of 0.0045 
percent. 

TABLE- 6. Least squares estimates of coefficients for vapor 
pressure eq (/4) a 

Coefficient Least squares Standard deviation Signjficancr: 
estimate of coefficient level b 

A -1.062454904 X U)3 4.993 X 10' 99.5%+ 
B - ~.~7144069 1 1.056 99.5%+ 
C 1.524254979 X 10-' 5.670 X 10- 3 99 % 
D 2.992927939 X 10' 4.796 99.5%+ 
E 2.465760638 X 10- 3 5.049 X 10- ' 99.5%+ 

"' Where P is in aim and T js in K. 
b These parame ters are significant at the level indicated when applying the standard 

F test. 

Table 6 lists the five coefficients for eq (14). Also 
tabulated in table 6 are the standard deviations and a 
significance level of these parameters. The signifi­
cance level indicates these parameters are signifi­
cant at least to the level indicated when applying 
the· standard F test. 

7. The P-V-T Surface 

Many equations of state have been proposed to 
represent the P-V-T surface. Some of these equa­
tions represent the experimental data adequately 
in limited regions of the thermodynamic surface 
but are quite inadequate in other regions. Other 
equations, taking the form of polynomials along 
isotherms or isochores, are well suited to represent 
a single source of highly precise experimental data. 
However, the use of these polynomial expressions 
becomes very difficult in a complete correlation of 
the P-V-T surface with multiple sets of experimental 
data with odd spacings of temperature and density. 

In this analysis the P-V-T surface was basically 
represented by an equation of state proposed by 
Benedict, Webb, and Rubin [23] with modifications 
by Bloomer and Rao [24] and further modified and 
extended by Strobridge [25]. 

The Benedict-Webb-Rubin equation was devel­
oped by defining and utilizing a quantity A, called 
the residual work content. The residual work content 
was defined as the difference between the Helmholtz 
function for a real substance and the Helmholtz 
function for an ideal gas. 

The Helmholtz function 

A=U-TS (33) 
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may be combined with the first and second laws of 
thermodynamics, 

dU=TdS-PdV. (34) 

The resulting relationship is 

dA=-PdV-SdT. (35) 

From eq (35), 

(36) 

where P is the difference in pressure between the 
real and ideal gas. Then 

P= pRT+ p2 G:)T (37) 

where the first term on the right side of eq (37) is 
the ideal gas pressure and the second term is the 
difference between the real and ideal gas pressure. 
Benedict et al. [23] proposed an expression for the 
residual work content which was actually an exten­
sion of the Beattie and Bridgeman equation. The 
extension to the Beattie-Bridgeman equation was 



necessary in order to represent more accurately 
the real fluid properties at densities which were 
higher than the Beattie-Bridgeman equation could 
adequately represent. Beattie noted that isometrics 
could be expressed by an equation of the form 

(P-pR1)/p2=RTF,(p)- F2(P) - Fa(P)/T2. (38) 

Equations for the functions F" F2, and Fa were 
then empirically developed to fit experimental data 
and, at the same time, remain consistent with the 
residual work content. By these means, Benedict 
et al. developed an eight adjustable parameter 
equation of state for hydrocarbons. 

Mter further modifications, Strobridge [25] ex­
tended the Benedict-Webb-Rubin equation to 
represent more accurately the properties of nitro­
gen. The Strobridge modifications resulted in an 
equation with sixteen adjustable parameters. 

The form of the equation expressed by Strobridge 
was the one adopted for the determination of the 
argon P-V-T surface. This form of equation appeared 
justified because corresponding states theory in­
dicated that there should be reasonable correspond­
ence between nitrogen and argon [18]. The equation 
of state then used is 

P= pRT+ p2(ntT+ n2 + n3/T+ n4/T2 + ns/T4) 

+ p3(T4;T+ n7)+ p4nsT 

+ p3(n9/'f'2 + ntO/P + nt dT4) exp (- nt6p2) 

+ pS(ndT2 + ntalT3 + nt4/T4) exp (-nt~p2) 

(39) 

As a matter of convenience, eq (39) was solved 
for Z -1, and the resulting expression was then 
fitted to the data by least squares. This expression is 

Z - 1 = N (nl + nz/T + n3/T2 + n4/P + ns/TS) 

+~ (T4;+U7/1)+~ ns 

~ J + R (ndP + ntalT4 + nt4/T~) exp (- nt6p2) 

~ + R nls/T. (40) 

A preliminary least squares fit of eq (40) to the 
selected P-V-T data indicated possible round-off 
discrepancies due to the very large number of 
arithmetic operations involved with the solution of 
the normal equations. Therefore, the computer 
program for " the least squares fitting routine was 
written for double precision arithmetic which carried 
20 decimal figures throughout the calculations. This 
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procedure essentially doubled the number of sig­
nificant " figures carried by the computer, so that 
round-off error due to the large number of arithmetic 
operations would be minimized. 

In addition, an effort was made to check the 
results of the least squares solution to see if round­
off error, due to operating on an ill-conditioned 
matrix, was present. The method used to perform 
this check is outlined as follows: The set of normal 
equations was obtained by standard techniques. 
The second normal equation in the set was multi­
plied by a constant and added to the first normal 
equation. This sum then replaced the original second 
normal equation. The third normal equation was 
then multiplied by a different constant and added to 
the new second normal equation, and so forth. Each 
of the constant multipliers was, in ge!1eral, different. 
The constants were selected so that each of the 
diagonal elements of the matrix formed by the re­
sulting set of normal equations was larger than the 
elements to its right. This criterion was used since 
appreciable loss of accuracy may occur if a diagonal 
is smaller than elements to its right. The entire 
check procedure is then equivalent to the rotation 
of each of the normal equations relative to the 
others. The solution to the matrix with rotated 
vectors could then be obtained. If the solution was 
the same as that for the original matrix, then it was 
considered likely that a sufficient number of 
significant figures was carried in the double pre­
cision computer solution to make round-off errors 
insignificant. For the preliminary least squares fit 
mentioned above, the solution to the matrix with 
rotated vectors was the same as the original matrix, 
to eight significant figures. Although eight signifi­
cant figures is not indicative of the precision of the 
original P-V-T data, the agreement of the two solu­
tions indicated that numerical round-off errors were 
probably insignificant. 

The preliminary least squares fit showed that the 
data of Walker [11] deviated substantially from those 
of Michels et al. [1] and Rogovaya et al. [7]. There­
fore, the data of Walker were not used in the sub­
sequent "fits to eq (40). (Further mention of Walker's 
data will be made later.) 

In the subsequent fits it was found desirable to 
satisfy the standard least squares criteria and, in 
addition, to simultaneously constrain eq (40) to 
exactly satisfy three specific requirements at the 
critical point. The specific constraints which were 
used are: 

1. The critical isotherm of the equation of state 
(40) has zero slope at the critical point. 

(~0T-O (critical point) 

2. The critical isotherm of the equation of state 
(40) has a point of inflection at the critical point. 

(critical point) 



3. The equation of state (40) predicts the critical 
pressure when the critical density and temperature 
are substituted into it. 

In addition, provisions were made to account for 
the different uncertainties in the experimental data 
from the different data sources. The weighting 
function described by eqs (18) and (23) was used 
in conjunction with the equation of state (40), where 

P Y=Z-I=--I pRT (41) 

(J'2- - -- -+=+-_ (~~2 _ Z2 (M ~() ~!-)2 
y 2 4 P p T (42) 

( af ) = (a(z -1)) = (a~ 
aX1 aT p aT}p (43) 

( af)=(a(Z-I») =(a~ 
aX2 ap T ap}T (44) 

(45) 

Substituting eqs (42) through (45) into eq (18), and simplifying, 

W =Z -2--=-[M-:--=--+ ~-,----~ -+--:--=~T:::-::-]2---:+ [=--T--':"(~-=-Z)-~---=! ]:--2+--=-[p----'-(----=aZ-'--) -~--=-]2' 
P p T aT p T ap T p 

(46) 

The uncertainties in the P-V-T data were esti­
mated from the statements of the investigators, 
from a knowledge of the experimental apparatus, 
and from preliminary examinations of the data. 
The estimated uncertainties associated with the 
various data are given in table 7. 

The uncertainties from table 7 were substituted 
into eq (46) and weights were calculated for each 
P-V-T data point. These weights were then sub­
stituted into the generalized normal least squares 
equations with constraints as shown by Hust and 
McCarty [20]. 

TABLE 7. Estimated uncertainties of the experimental data 

% Density % Pressure % Temperature Source 

0.05 0.02 0.02 [ II 
.OS .02 .02 [ 61 
.1 .1 .1 [ 71 
.2 .02 .02 [ 81 
.2 .02 .02 [ 91 
.2 .2 .2 [lOj 

Since the normal equations are linear in the 
coefficients, the coefficient n16 in eq (40) had to be 
determined before the remaining 15 coefficients 
were evaluated. A systematic search for the op­
timum value of n16 was performed on the digital 
computer so that a minimum in the sum of the 
squares of the deviations was obtained. In order 
to have a realistic range in the search for n16, an 
approximate value was obtained by corresponding 
states with nitrogen. A modified corresponding 
states method, proposed by Kamerlingh Onnes, 
was used. This method suggests that the reduced 
density is 

pRTc 
Pr=---p;-' (47) 

The difference between eq (47) and eq (1) is dis­
cussed by Gosman [22]. In eq (40), n16 appears as 
the coefficient of a squared density term. From eq 
(47), a corresponding states expression for a squared 
density term was obtained: 

316-977 0 - 69 - 2 

11 

(48) 

where the subscripts N and A represent nitrogen 
and argon, respectively. Equation (48) was sub­
stituted into the exponential term in eq (40). From 
Strobridge, the n16 for nitrogen was also substi­
tuted into the exponential term of eq (40). The 
resulting approximate value of the coefficient nl6 

for argon from corresponding states was calculated 
to be 0.0039. The range of the systematic search 
for nl6 was thus determined to be 0.0039 ± 0.0015. 
The systematic search was accomplished by in­
crementing 0.0039 by small values and performing 
a linear least squares fit for each consecutive value 
of n16. As the search proceeded, it was found that 
the sum of the squares of the deviations were not 
much affected by the current value of n16. However, 
the fit of the equation of state in the region of the 
critical point was moderately affected by the dif­
ferent trial values of n16. The resulting value of 
nl6 and the least square estimates of the remaining 
15 coefficients for eq (40) are given in table 8. 

TABLE 8. Least squares estimates of coefficients for equation of 
state (40)a 

Coefficient Least squares Standard deviation Significancl'! 
estimate of coefficient level %b 

n, 0.25978374 X 10-' 4.927 x 10-' 99.5+ 
n, -.89735867 3.002 x 10-' 99.5+ 
n, - .67273638 x 10' 2.939 x 10 99.5+ 
n. - .26494177 x H)' 2.475 x 10' 99.5+ 
n, .97631231 X 10' 7.133X 10' 99.5+ 

"" . 70478556 x 10-' 1.814 x 10-' 99.5+ 
n, - .46767764 X 10- 2 1.323 X 10-' 99.5+ 

"" .22640765 x 10-' 6.177 x 10-' 99.5+ 
no .48141071 X 10' 8.442 X 10 99.5+ 
noo .64565346 X 10' 3.152 X 10' 95.0 
n" - .11485282X H)8 2.495 X Hl' 99.5+ 
n" -.64835488 1.942 X 10- ' 99.5+ 
n" .46524812 X 10' 7.373 X 10' 25.0 
n .. .10933578 X 10' 1.287 X Hl' 99.5+ 
n" .69439530 X 10-' 4.064 X 10-' 99.5+ 
n" .48 X 10-' ........................... . . . . . . .. . ..... .... . .......... 

• Where P is in atm, T i. in degrees K, p is in g·mol/l, and R = 0.0820535 aim I/g· 
mol K. 

b These parameters are significant allhe level indicated when applying the standard 
Fiest. 
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8. Analysis of P-V-T -'}ata 

Using the coefficients shown in table 8, the 
equation of state (40) was used to calculate the 
densities which corresponded to each of the experi­
mental P-V-T data points. Percent density deviations 
between the points calculated by the equation of 
state and t4e individual experimental data points 
which were used in the fit are illustrated in figures 5 
through 15. These deviation plots permit the identi­
fication of the maximum deviations corresponding 
to each region of the P-V-T surface as well as the 
specific deviations from each data source. 

The deviation plots for the data of Michels et al. 
[1] and Michels et al. [6] are shown by figures 5 
through 11. Inspection of figures 5 and 6 shows that 
the largest density deviations occur in the vicinity 
of the 153.15 K isotherm. For this isotherm, the 
largest deviations occur in the region of the critical 
point. The same phenomenon occurs for the 163.15 
K and 150.65 K isotherms and, to a lesser extent, 
for the 173.15 K and 148.15 K isotherms. This be­
havior is illustrated in figures 7 and 8. 

Figure 16 illustrates the characteristics of the 
different isotherms as they range over the pressure­
density coordinate system. It is seen that the high 
and low temperature isotherms have relatively large 

NOTE : Density Deyiation lines are Broken in the Reoion of 
Critical Pressure. See Figure 7 for Deviations in this Reqion. 

FIGURE 5. Low temperature density deviations of data by 
Michels et al. [l] from the equation of state (40). 
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NOTE : O.nlity Deviation lines a't Broken in the Region of 
Critical P" .. ur • . SH Figur. 7 for Deviations in this Retion. 

FIGURE 6. High temperature density deviations of data by 
Michels et al. [1] from the equation of state (40) . 
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FIGURE 7. Density deviations in the region of the critical point. 
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slopes with not much change in curvature. However, 
the isotherms between 148 K and 173 K have large 
variations in the slopes and curvatures. In addition, 
the slopes of the isotherms in the vicinity of the 
critical point are small, thus producing large density 
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from equation of state (40). 

deviations for rather small pressure or temperature 
deviations. The small cross-hatched area in figure 16 
indicates the region where the density has the great-
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est sensitivity to small variations in pressure or 
temperature. If the data points in this region are not 
included, the mean of the absolute values of the 
density deviations is 0.08 percent for the data of 
Michels et al. [1]. If the data points in this region are 
included, the mean deviation in density becomes 
0.26 percent for the data of Michels. 

Figures 7 and 8 are expanded-scale deviation 
plots from figures 5 and 6 and correspond to the 
region near the critical point. Figure 7 is a density 
deviation plot and shows a systematic trend which 
can be attributed to the equation of state. The mag­
nitudes of the density deviations in figure 7 are due 
to the extreme sensitivity of the density in this 
region. Figure 8 is a pressure deviation plot for the 
same region. The systematic trend is still present, 
but the magnitudes of the pressure deviations are 
significantly smaller than the corresponding density 
deviations. 

Figure 9 illustrates the density deviations for two 
isotherms from the data of Michels et al. [6]. A total 
of 94 data points for these two isotherms were fitted 
to pressures of about 1000 atm. The mean of the 
absolute values of the density deviations is 0.034 
percent for pressures to 1000 atm, and the data 
appear to be consistent with the data of Michels 
et al. [1]. In addition, figure 9 shows density devia­
tion plots for the same two isotherms for pressures 
from 1000 to about 3000 atm. The equation of state 
was not fitted to any data above 1000 atm, so the 
latter deviation plots represent an extrapolation of 
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the equation of state for pressures beyond the fitted 
data. The density deviations are approximately 
constant for this pressure range with a mean density 
deviation of 0.15 percent. 

Figure 10 exhibits the density deviations for 41 
experimental data points of Michels et al. [1] which 
are close to the saturation boundary. With the excep­
tion ot the points close to the critical point the mean 
density deviation is 0.05 percent. The density devia· 
tions for the data close to the critical point are 
again due to the extreme sensitivity of the density in 
this region. 

Figure 11 is a deviation plot for the saturation line, 
showing the density deviations between the 23 data 
points of Michels et al. [1] and the saturation densi· 
ties calculated by the equation of state. Both 
saturated liquid and saturated vapor data points are 
illustrated. With the exception of the saturated 
liquid data points within about 1.5 K of the critical 
point, the mean density deviation for the saturated 
liquid data is 0.03 percent. With the exception of the 
saturated vapor data points within about 2.5 K of 
the critical point, the mean density deviation for the 
saturated vapor data is 0.24 percent. 

Figure 12 is the deviation plot for the data of 
Rogovaya et al. [7]. The mean density deviation is 
0.17 2.~rcent except for the 90.13 K isotherm. This 
90.13 K isotherm appears to be inconsistent with 
the data of van Itterbeek and Verbeke [8], and 
van Itterbeek et al. [9], and exhibits a mean density 
deviation of 0.4 percent. Generally, the data of 
Rogovaya showed a more random distribution of 
density deviations than the data from some of the 
other sources. Rogovaya's data, in general, did not 
approach the region near the critical point as closely 
as did ~Michels et al. [1] and,. therefore, no direct 
comparison of these-two data sources is possible in 
this region where the data are difficult to fit. 

Figure 13 illustrates the density deviation plot 
for the data of van Itterbeek and Verbeke [8]. The 
mean density deviation for these four isotherms is 
0.026 percent. However, the 0.026 percent density 
deviation of van Itterbeek et al. [8] cannot be 
directly compared with the deviations of the other 
data sources since van Itterbeek's data are in the 
high density-low pressure region of the P-V-T 
surface where the isothermal derivative (apjaptr is 
large. In this region small displacements in the iso­
therms result in small density deviations. 

Figures 13 and 14 show the deviation plots for the 
data of van Itterbeek, Verbeke, and Staes [9]. 
Comparisons of the deviations for isotherms of 
increasing temperature show a trend of increasing 
negative density deviations. This trend is not evident 
in the deviation plots for Michels et al. [1], figures 
5 and 6, or Rogovaya et al. [7], figure 12. The mean 
density deviation is 0.16 percent with the larger 
deviations occurring at the higher temperatures. 

Figure 15 shows the deviation plot for the data of 
van Witzenburg [10]. The trend here is opposite that 
of van Itterbeek, Verbeke, and Staes. The data of 
van Witzenburg exhibit an increasing negative 
density deviation for increasing temperatures. 



However, the van Witzenburg data extend to higher 
pressures than. most of the other data sources for 
equivalent isotherms, and direct comparisons of 
density deviations are difficult to make at these 
higher pressures. The low temperature, low pres­
sure isotherms may be compared with the data of 
van Itterbeek, Verbeke, and Staes, where it is 
noted that the van Witzenburg data exhibit density 
deviations which are about an order of magnitude 
greater in the negative direction. The mean density 
deviation for the data of van Witzenburg is 0.30 
percent. 

Walker [11] displayed his data by isochores. 
Comparisons with other data sources were difficult 
to make since most of the other data were obtained 
isothermally. Therefore, Walker' s data were 
smoothed to a function of the form P= ql + q2T+q3'P 
where the q's are constants. (This function was 
deemed adequate since the isochoric data of Walker 
was in the liquid region and exhibited only small 
deviations from straight lines.) These smoothed 
isochoric P-T values were plotted and compared 
with other data sources. This plot showed that the 
slopes from the fitted function 'fere consistent with 
the slopes from other data, but the values of the 
isochores assigned by Walker did not agree with 
others. This disagreement became greater as the 
critical point was approached. Therefore, the den­
sity values of each of the isochores were redeter­
mined by least squaring the experimental data, one 
isochore at a time, and extrapolating that isochore 
to the saturated liquid line. Upon comparison, the 
original data of Walker deviate from the values 
predicted by the equation of state by about 2 percent 
in density, with the deviations increasing to about 
10 percent as the critical point is approached. How­
ever, when comparing the density deviations be­
tween the recalculated least square densities and 
the densities predicted by the equation of state, 
the mean deviation was 0.25 percent. This latter 
comparison is, perhaps, a more valid comparison 
of Walker's data, since he was not able to actually 
measure the mass of his sample experimentally. 
Instead, the density values quoted by Walker were 
estimated by him from an extrapolation of the iso­
chores to the coexistence line. Private communica­
tion from Walker [13] indicated that there were 
errors in the original values quoted for the densi­
ties, especially near the critical point. The new 
values given to us by Walker [13] agreed much more 
closely with the values predicted by the equation 
of state. 

Figure 17 illustrates the density deviations for 
the data of Michels et al. [6]. These data include 
temperatures above 300 K for pressures to about 
2600 atm. Since the equation of state was not 
fitted to the data in this region, these deviation 
plots represent an extrapolation of the equation of 
state for temperatures and pressures beyond the 
fitted data. The mean density deviation for these 
data is 0.15 percent for temperatures to 423 K and 
pressures to 2600 atm, which includes a total of 
247 data points. The mean density deviations for 
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FIGURE 17. Density deviations for data at temperatures and 
pressures extrapolated beyond the fitted data points. 

temperatures from 323 to 423 K for pressures to 
1000 atm is 0.11 percent. The deviation plots of 
figures 5 through 17 display varying amounts of 
systematic deviations between the equation of 
state and the experimental data. Most of the sys­
tematic deviations are small except for the region 
near the critical point where they become quite 
marked, as shown in figures 7 and 8. It should be 
noted that these systematic deviations, although 
quite small in most cases, are magnified in their 
contribution to the calculated derivatives. 

Although not used for the final fit, the 112 data 
points of 9nnes and Crommelin [26] were compared 
to the density values predicted by the equation of 
state. In general, the data of Onnes et al. exhibited 
a greater scatter than the other data sources, with 
a mean density deviation of 1.05 percent from the 
equation of state. Although the Onnes data were 
limited to pressures below 60 atm, some of the 
experimental isotherm data overlapped portions of 
the experimental range investigated by Michels et al. 
[1] . Generally, the Onnes data showed the same 
characteristics as the Michels data except for lesser 
precision. In almost all cases where comparisons 
could be made, the magnitude of the density quoted 
by Onnes was smaller than the experimental den­
sity of Michels. In a few instances, the Onnes data 
could be compared with the data of Rogovaya et al. 
[7]. Again, the densities quoted by Onnes were 



smaller than those given by Rogovaya. Some of 
these latter comparisons indicated that the equa· 
tion of state predicted density values between those 
of Onnes and those of Rogovaya. 

A final comparison was made between the com­
pilation of the National Bureau of Standards Circular 
564 by Hilsenrath et al. [27] and the values predicted 
by the equation of state. A total of 338 points was 
used for this comparison. The points were selected 
so as to well represent the entire range of data 
compiled by Hilsenrath et al. The temperature 

range included temperatures from 100 K to 5000 K 
with pressures ranging from 0.01 to 100 atm. Except 
for one region, this comparison showed a mean 
density deviation of 0.08 percent. The one region 
where the deviations were greatest was at the high 
pressure-low temperature end of the tables com­
piled by Hilsenrath et al. (pressures near 100 atm for 
temperatures near 180 K). For this region, the values 
of Hilsenrath et al. were obtained essentially by 
extrapolation of existing experimental data, which 
may account for the larger deviations. 

9. Temperature Scale Conversions 

Wherever appropriate, corrections were made to 
convert the temperatures reported by the investi­
gator to a consistent thermodynamic Kelvin tem­
perature kale based on an ice point of 273.15 K. 
In some cases the specific temperature scale used 
by the experimenter was not clearly specified. In 
these cases, the literature was searched for other 
papers or information from the same laboratories, 
and conversions were made from these determina­
tions. Different methods for correcting tempera­
tures are possible, but the following were deemed 
most appropriate. 

Conversions for the data of Michels, Levelt, and 
de Graaff [1] and Michels, Wijker, and Wijker [6] 
from the van der Waals Laboratory were made by 
first correcting the temperatures from the van der 
Waals thermometer to the International Tempera­
ture Scale and then correcting to the thermodynamic 
temperature scale. The net correction was less than 
0.02 °C which is within the precision of the data. 
The corrections from the van der Waals thermom­
eter to the International Temperature Scale were 
made by using the information furnished by 1. M. H. 
Levelt-Sengers [28]. 

The data of Onnes and Crommelin [26], based 
upon an ice point of 273.09 K, were converted to the 
International Temperature Scale by 

273.15 
T= (tc + 273.09) 273.09 

where tc is a reported centigrade temperature. 
The data of Clark et al. [14], based upon an ice 

point of 273.16 K, were converted to the Inter­
national Temperature Scale by 

273.15 
T= (tc +273.16) 273.16' 

Corrections from the International Temperature 
Scale to the thermodynamic temperature scale 
were made by using the tabular information fur­
nished by C. R. Barber [29]. The tabular information 
by Barber is shown in table 9. 

TABLE 9 . Conversion from international to 
thermodynamic temperatures 

Temperature ,OC 

- 10 
- 20 
- 30 
- 40 
- SO 
-60 
- 70 
-SO 
- 90 

-100 
-110 
-120 
- 130 
-140 
-ISO 
-183 

TUI.- T1nt. 

0.005 
.011 
.017 
.024 
.0295 
.034 
.0365 
.036 
.032 
.0245 
.015 
.0025 

- .010 
-.020 
- .024 
o 

10. Derived Thermodynamic Properties 

The calculation of entropy, enthalpy, and internal 
energy was performed by using the equation of 
state (40), the zero pressure (ideal gas) and specific 
heat (cp), and the vapor pressure equation (14). 
The relationships for calculating these derived 
properties have been described by Gosman [22], 
and Hust and Gosman [30], and are presented below. 

The entropy of the gaseous phase, as well as the 
saturated vapor, was expressed as 

5 = S~ - R In (e!fE\ + (p [R _l (ap) ] dp 
o Po J do P p2 aT p 

+ co_. i T dT To P T 
(49) 
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For eq (49) the reference entropy, S; = 3.23367 
J/g- K, for the ideal gas at Po = 1 at~, and the 
normal boiling point temperature at To = 87.28 K 
was selected from Hilsenrath e t al. [27]. The ideal 
gas specific heat, ~=H~=0.520320 J/g-K, was 
also taken from Hilsenrath et al. 

The enthalpy of the gaseous phase was ex­
pressed as 

H=Hro+ Tf:[;-;G~tJdp+~ 
- RT + (T c~dT. 

Jro (50) 



Compilations often do not tabul~te H~o' Many times 
these compilations tabulate Hro - Uo, where Uo 
is the ground"-state energy. For purposes of con­
sistency with these compilations, a val_u~ of 
H~0-Uo=45.4119 JIg (for the ~<!~al gas at 87.28 K) 
was selected from ffiIsenrath [27J. Then, in order 
to obtain H~o for eq (SO), a value of Uo= 192.5197 JIg 

and 

was assigned to the ground-state energy. This 
value of Uo was selected so that the enthalpy of 
the saturated liquid at 1 atm pressure agrees with 
the value given by Din [31]. 

The equation of state (40) was then substituted 
into eqs (49) and (SO). Upon integration, the resulting 
expressions are 

(51) 

2 (tv,) 1 (3719 4nlO 5nll ) ( 2) + p "2 - 2n16 T2 + ra + T4 exp - n16p 

_ (L + _1_) (3n12 + 4n13 + 5n14) (_ 2) 
2n16 2nr6 T2 T3 T4 exp n16P 

+ _1_ (3n12 + 4n13 + 5n14). 
2ni6 T2 ra T4 (52) 

The internal energy was obtained from 

U=H-Plp' (53) 

The method of calculation proceeded as follows: 
a. The properties of the gaseous phase and sat­

urated vapor were calculated with the use of 
eqs (51), (52), and (53). 

b. The volume of vaporization (VY- VI) was 
calculated with the use of the equation of state (40) 
and the vapor pressure equation (14). 
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c. The slope of the vapor pressure curve dPldT 
was obtained from eq. (14). 

d. The entropy and enthalpy changes due to va­
porization were calculated with 

and 

• 



e. The saturated liquid properties were obtained 
by subtracting the entropy and enthalpy changes 
due to vaporization from the saturated vapor value. 

f. The saturated liquid line, as calculated in 
step e, was then used as the datum point for cal­
culating properties below the critical tempera­
ture and densities greater than those of the sat­
urated liquid. These properties were calculated 
by the isothermal integration of the appropriate 
portions of eqs (49) and (50). These expressions are 

S = SI- IP [~(a!::\ ] dp 
T pi P a'f)p 

and 

By progressing through the above procedure, the 
derived properties were calculated for the entire 
portion of the thermodynamic surface under 
consideration. However, the method of calcula­
tion outlined above may result in a discontinuity. 
This discontinuity exists at temperatures below 
the critical temperature for pressures above the 
critical pressure. The cause of the discontinuity 
arises from the fact that the calculation of the 
derived properties was performed by one proce­
dure for temperatures above the critical tempera­
ture and a second procedure for temperatures 
below the critical. For temperatures below the 
critical, the changes of entropy and enthalpy due 
to vaporization had to be calculated as outlined 
in step d, and the saturated liquid line obtained as 
outlined in step e. For temperatures above the 
critical, steps d and e were not needed for the 
calculation of derived properties. The mutual 
boundary (at the critical temperature) between 
these two regions then exhibited the disconti­
nuity. This discontinuity in the derived properties 
is possibly du e to slight disagreement between the 
isochoric slope of the equation of state (40) at the 
critical point and the slope of the independently 
obtained vapor pressure equation (14) at the same 
point. 

When the discontinuities were plotted with a 
highly expanded scale, it was determined that the 
discontinuity was independent of pressure. Ad­
justments to the derived properties were then de­
termined by smoothing the transition region for 
isobars near the critical. These adjustments were 
applied to the derived properties by making ap­
propriate corrections to the entropy and enthalpy 
of vaporization. The adjustments were added to the 
entropy and enthalpy of vaporization , thus decreas­
ing the values for the entropy and enthalpy of the 
saturated liquid. Table 10 lists the temperature 
dependent adjustments which were made. 

All of the data which have been calculated were 
restricted to the liquid and gaseous regions by using 
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TABLE 10. Adjustments for entropy and 
enthalpy of the saturated liquid 

Temperat ure Entropy Entha lpy 
K J/g- K J/g 

adju stment II adjustment U 

150 0.009539 1.431 
149 .009750 1.453 
148 .008768 1.298 
147 .007549 l. 1l0 
146 .006330 0.924 

145 .005189 .752 
144 .004160 .599 
143 .003249 .465 
142 .002460 .349 
141 .001 789 .252 

140 .001239 . 173 
139 .000811 . 113 
138 .000490 .068 
137 .000260 .036 
136 .000100 .014 
135 .000010 .001 

~ These adjustments have been subtracted from the entropy and enthalpy of the 
saturated liquid. 

the following melting curve relationship: 

In eq (54) , A and C are constants which were 
determined by a least squares fit to experimental 
data. The form of this melting curve relationship 
is discussed by Goodwin and Weber [32]. 

The experimental data which were considered 
for the determination of the constant in eq (54) 
were taken from Michels and Prins [33] , Lahr and 
Eversole [34], and Bridgman [35]. The constants of 
eq (54) were determined to be 

A = 2078.76667 

C = 1.59817868, 

with a mean of the absolute pressure deviations 
of 0.08 percent. 

The properties, density, enthalpy, internal 
energy, and entropy, are presented as functions of 
pressure and temperature in the tables of appendix 
A. The number of significant figures given in these 
tables is not justified on the basis of the uncer­
tainties of the data, but, rather, is desirable to 
maintain the internal consistency of the tables. 

A comparison of the heat of vaporization was 
made at the normal boiling point. The heat of 
vaporization of various investigators was compared 
with the value obtained by using the equation of 
state (40) and vapor pressure equation (14). This 
comparison is shown in table 11. 

TABLE 11. Comparison of heat of vaporization 
at the normal boiling point 

Frank and Clusius [361 ........ ... .. . 
Flubacher et 81. [15] .. ..... .......... . 
Euc ken [371 ..... . .. ...... ...... . 
Ziegler et al. [21 .... ...... ............. . 
This work .. .............. .......... . ... . 

1557.5± 1.5 
1555.0±4.6 
1501 
1543 .4 
1546.3 

cal/g. mol 
cal/g.mol 
cal/g·mol 
cal/g. mol 
cal/g-mol 



II. Equation of State and Saturation Boundary 

The saturation boundary can be defined by the 
equation of state if there is a sufficient number 
of highly precise experimental P-V-T data points 
along the entire boundary. However, saturation 
densities are difficult to measure with high pre­
cision. In addition, for argon there was only one 
source of satisfactory saturation data, and these 
data did not cover the entire two-phase boundary. 
Therefore, it was difficult to perform a critical 
evaluation of these saturation data for the purpose 
of determining the saturation boundary. 

Instead, there was available a relatively large 
number of P-T data points along the saturation 
boundary. For these data, the vapor pressure equa­
tion (14) was developed. Therefore , the definition 
of the saturation boundary was obtained by the use 
of two independent equations - the equation of 
state (40) and the vapor pressure equation (14). 

The saturation bounJary, as defin~ed by the 
equation of state alone, was then examined for 
internal thermodynamic consistency by using the 
conditions of thermodynamic equilibrium: 

Tl= To 
pl=po 
Gl = Co. (55) 

The equation of state (40) is a continuous function 
with a van der Waals .form across the saturation 
boundary. Therefore, the equation for thermo­
dynamic equilibrium (55) could be substituted into 
the equation of state (40). This was accomplished 
for a given saturation temperature by imposing 
the equilibrium conditions upon both the equation 

of state and the equation for the Gibbs function 
derived from the equation of state and solving them 
iteratively and simultaneously for the corresponding 
density. By this means the entire saturation ,bound­
ary was derived by the use of the equation of state 
and the conditions of thermodynamic equilibrium, 
without using the independently obtained vapor 
pressure equation (14). 

A comparison of the vapor pressures as derived 
from the equation of state and the vapor pressures 
as obtained from the vapor pressure equation was 
made. The results of this comparison are shown in 
table 12 for 5-deg temperature increments. 

The agreement shown in table 12 indicates that 
the equation of state is internally consistent with 
the conditions of thermodynamic equilibrium. 
Table 12 also indicates that the equation of state . 
satisfactorily predicts P-V-T values in the vicinity 
of the saturation boundary. 

TABLE 12. Vapor pressure comparison 

T. K PJ,Alm P'l.Atm PI-PI 

85 0.77945 0.79737 -0.01792 
90 1.32133 1.34210 - .02077 
95 2.lll03 2.13029 -.01926 

100 3.20974 3.22249 - .01275 
lOS 4.68121 4.68277 -.00156 
llO 6.59102 6.57784 .01318 
ll5 9.00650 8.97649 .03001 
120 11.99740 1l.94960 .04780 
125 15.63733 15.57082 .06651 
130 20.00587 19.91829 .08758 
135 25.19168 25.07827 .11341 
140 31.29662 31.15296 .14366 
145 38.44154 38.28020 .16134 
ISO 46.77419 46.7ll97 .06222 

PI is calculated from vapor pressure equation (14). 
P t is calculated (rom equation of state (40). 

12. Second Virial Coefficient and Intermolecular Potential 

An equation of state which has been extensively 
used is 

where B, C, D, . . . are virial coefficients and rep­
resent deviations from ideal gas behavior. The 
virial coefficients are functions of temperature and 
are related to interactions between molecules. The 
second virial coefficient, B, is related to interactions 
between two molecules, the third virial, C, to the 
interaction between three molecules, etc. When 
the gas has negligible molecular interaction as 
compared to interaction with the walls of the con­
fining vessel, then eq (56) reduces to the perfect 
gas where Z = 1. 

The virial coefficients for the equation of state 
(40) were obtained by arranging the equation of 
state into virial form as shown in eq (56). In order 
to obtain the proper form, the exponential term of 
eq (40) was expanded as 
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(nJ6p2)3+ 
3! . (57) 

Substituting eq (57) into eq (40), 

+ 4 ( n12 + nJ3 + nl4 _ nl6 n 9 
p RP RT4 RTS RP 

_ nl6 n lO _ nl6 n ll ) + (58) 
RT4 RT5 . 



In eq (58), the coefficient of p is the second virial 
coefficient, the coefficient of p2 is the third virial 
coefficient, etc. 

The second virial coefficient was calculated from 
eq (58). These coefficients, as functions of tem­
perature are listed in table 13. A comparison be­
tween the second virial coefficient calculated by 
using the virial equation of state (58) and other 
published data is shown in figure 18. 

Except for the data of Kerr [39], figure 18 illus­
trates that eq (58) represents the second virial 
coefficients within the uncertainty of the data for 
temperatures from about 120 to 300 K. Kerr's virial 
data do not appear to have the precision of the 

TABLE 13. Second virial coefficients as calculated from virial 
equation of state (58) 

.!! 
0 

e 
"-
'" lj 
-

II) 

I 

a 

20 

'0 

60 

eo 

100 

120 

"0 

160 

leo 

200 

220 

Temp. B Temp. B K K 

90 - 215.22 200 -47.18 
100 -180.09 210 -42.20 
110 -152.39 220 -37.79 
120 -130.32 230 -33.86 
130 -112.47 240 -30.33 
140 - 97.84 250 -27.15 
150 - 85.69 260 -24.27 
160 - 75.47 270 -21.65 
170 - 66.78 280 -19.26 
180 - 59.31 290 -17.07 
190 - 52.83 300 -15.05 

B has Units of cm3/mol. 
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FIGURE 18. Comparison of second virial coefficients. 
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other data sources. For temperatures below 120 K, 
eq (58) appears to predict virial coefficients which 
are about 2 percent high. Fender and Halsey [40] 
estimate their error to be about 1.5 percent, and it 
is therefore concluded that eq (58) is a satisfactory 
representation of the virial coefficient data. 

The second virial coefficient may also be theo­
retically calculated if a mathematical model for 
the intermolecular force potential is selected. A 
number of force potentials have been advanced 
and some of these are discussed in Hirschfelder, 
Curtiss, and Bird [38] and Gosman [22]. 

The Lennard-Jones 12-6 model for the potential 
function is the one most commonly used and was 
therefore investigated. The expression for the 
energy for the 12-6 potential is 

(59) 

Using eq (59), the expression for the reduced sec­
ond virial coefficient is obtained as illustrated by 
Gosman [22]: 

'" [ l*;I) (2k-1)] (_2*+1) 
B*=L --- r -- T* 4 

~o 4k! 4 . 

With eq (60) and the equations 

T*=kT 
E 

B 
bo= B* 

(60) 

(61) 

the two parameters E and (T were obtained by the 
method described in Gosman [22]. 

It was found that the two parameters, E and (T, 

of the 12-6 potential are not truly constants, but 
are somewhat temperature dependent. It was also 
found that the higher temperature isotherms (about 
300 K) are relatively insensitive to variations in the 
parameters. At the lower temperatures, however, 
relatively small variations in the parameters result 
in large variations in the second virial coefficient. 
This effect was demonstrated for argon by Gosman 
[22] and shown to be a general property of the re­
lationship between second virial coefficients and 
potential functions by Hanley and Klein [44]. 

For the temperature range of 90 to 300 K a set 
of parameters for the Lennard-Jones 12-6 potential 
was determined to be 

E/k=1l2.4 K 

bo=57.7 cm3/mol. 



Using these parameters, the mean deviation in B 
from values calculated by eq (58) was 0.78 cm3/mol. 

It is of interest to compare the values of these 
parameters with values determined by other 
sources. Holborn and Otto [41] found E/k= 122 
and bo = 49.58 for temperatures between 173 and 
673 K. Michels, Wijker, and Wijker [6] found 
E/k= 119.8 and bo=49.8 for temperatures between 
273 and 423 K. Since the latter two sets of param­
eters were obtained for relatively high temperature 
data, it is expected that the value of E/ k would be 
larger than that obtained in this evaluation. 

Since the 12-6 potential appears to be satisfactory 
for limited temperature ranges only, other forms 
of the potential function were investigated. Using 
the basic technique developed by Hanley [42] the 
family of "m-6" functions was evaluated along 
with the Kihara potential function. The "m-6" 
functions were calculated by using the values of 
the reduced second virial coefficients as presented 
by Klein [43]. The results of these calculations 
are shown in figure 19. 

Figure 19 shows the deviations between second 
virials as calculated by the various potential func­
tions and those calculated by the virial eq (58). The 
deviations in second virial for the 12-6, 15-6, 18-6, 
and Kihara potential functions are all illustrated 
in figure 19. It is noted that the Kihara and the 
15-6 functions are almost identical over the whole 
temperature range. This similarity betw.een poten­
tial functions is discussed by Hanley and Klein 
[44]. For the temperature range of 90 to 300 K the 
set of parameters for the Kihara potential was 
determined to be 

E/k= 125 K 

Po=3.711 A 
a=0.080 A. 

Using these values for the Kihara potential, the 
mean deviation in B from values calculated by eq 
(58) was 0.53 cm3/mol. 

The 18-6 potential shows a negligibly small 
deviation in second virial above 120 K. Below 120 
K, figure 19 shows that the virials calculated by 
the 18-6 function deviate from those calculated 
by eq (58). However, this was the temperature 
range where eq (58) predicted virials which were 
2 percent too large. A comparison of the virials 
calculated by the 18-6 function with the original 
data shows that the 18-6 function predicts the 
virial coefficients to about the uncertainty of the 
data. The 18-6 function is also shown in figure 19 
to illustrate this point. 

The parameters for the 18-6 function were 
determined to be 

E/k= 157.5 K 

(7'=3.28 A. 

Using these values for the 18-6 function, and 
omitting the deviations below 120 K, the mean 
deviation in B is 0.14 cm3/mol. 

A final calculation was made for the second virial 
coefficient to determine the corrections due to 
quantum effects. The relationships which were 
used to calculate these second virials with quantal 
corrections for both the 12-6 and the Kihara poten­
tials are given by Hirschfelder et al. [38]. The 
results indicated that the quantal corrections are a 
fraction of one percent, even at the lower tempera­
tures. The magnitude of the quantal correction is 
within the uncertainty of the published experimental 
data. 

8!- -- 12 - 6 POTENTIAL 
- - 15-6 POTENTIAL 
------ KIHARA POTENTIAL 
---- 18-6 POTENTIAL 

-
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-
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160 180 200 220 240 260 280 300 

TEMPERATURE, OK 

FIGURE 19. Pote(ltial Junction comparison. 
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13. The Joule-Thomson Inversion Curve 

The louIe-Thomson coefficient, JL, is defined as 
the slope of an isenthalpic curve on the P-T coordi­
nate system: 

(62) 

Equation (62) may be rewritten for more convenient 
evaluation with the equation of state (39): 

(63) 

The loule-Thomson inversion curve is defined as 
the locus of points where JL = 0, and may be cal­
culated from 

L (~~t-L 
p2 (ap) - p 

ap T 

(64) 

In eq (64), the partial derivatives were evaluated 
from the equation of state (39). Equation (64) was 
programmed for an iterative solution to find the 
values of density and temperature which satisfied 
the equation. Pressure values were then calculated 
from the equation of state for the appropriate 
densities and temperatures. 

The loule-Thomson inversion curve data as cal­
culated by eqs (64) and (39), are given in table 14 
for 10-deg intervals. 

TABLE 14. Inversion curve from eq (64) 

Temp. Pressure Temp. Pressure 
K Atm K Atm 

130 69.27 220 431.68 
140 128.64 230 454.08 
150 181.92 240 473.88 
160 229.83 250 491.23 
170 272.96 260 506.28 
ISO 311.83 270 519.19 
190 346.81 280 530.07 
200 378.27 290 539.04 
210 406.48 300 546.22 

Figure 20 illustrates the inversion curve and 
shows the comparison with other data sources. 
The solid line represents the locus of inversion 
curve points as calculated by eqs (64) and (39). 
The solid line is terminated at 300 K, which is 
the temperature limit of the data fitted by the equa­
tion of state (39). The dashed portion of the inver­
sion curve above 300 K represents the locus of 
points as calculated by eq (64) with data from the 
equation of state which have been extrapolated 
beyond the fitted region. 

Figure 20 also shows the inversion curve data 
obtained by Roebuck and Osterberg [45] in 1934. 
In 1940, Roebuck and Osterberg [46] published a 
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paper indicating that a numerical error in the pres­
sure data had been made. Therefore, the Roebuck 
and Osterberg [45] data shown in figure 20 have 
been adjusted by the appropriate correction. The 
mean of the absolute values of the deviation in 
inversion temperatures between the corrected data 
of Roebuck and the values calculated by eq (64) 
is 1.1 percent. 

Michels, Levelt, and Wolkers [47] published 
louIe-Thomson coefficient data for temperatures 
from 133 K to 273 K. From these data, the inversion 
curve pressures and temperatures were obtained 
by determining where the louIe-Thomson coefficient 
was equal to zero. The inversion curve data of 
Michels et al. [47] determined in this manner, are 
shown in figure 20. The mean deviation between 
the Michels inversion curve temperatures and the 
temperatures calculated by eq (64) is 0.30 percent. 

Michels, Lunbeck, and Wolkers [48] published 
louIe-Thomson coefficient data for temperatures 
from 273 to 423 K. Although the equation of state 
was not fitted to data above 300 K, a comparison 
of the data of Michels and the calculated inversion 
curve is shown in figure 20. The mean deviation in 
inversion temperatures between the Michels et al. 
[48] data and the extrapolated values of eq (64) 
is 1.1 percent. 

The maximum inversion temperature as cal­
culated by eq (64) is about 794 K. Based on the 
Lennard-Jones 12-6 potential, Hirschfelder et al. 
[38] shows that the theoretical maximum reduced 



inversion temperature is 6.47. With this value of 
reduced temperature and a selected value for the 
E/ k parameter of the 12-6 potential, the theoretical 
maximum inversion temperature was calculated. 
If the value, E/k= 122, obtained by Holborn and 
Otto [41] for temperatures up to 673 K is used, the 
theoretical maximum inversion temperature is 
789 K. The deviation between the theoretical maxi· 
mum inversion temperature and the value calcu· 
lated by eq (64) is about 0.6 percent. If the value; 
E/k= 119.8, obtained by Michels et al. [6] for tern· 
peratures up to 423 K is used, the theoretical maxi· 
mum inversion temperature is 775 K, giving a 
deviation of about 2.5 percent. Based upon the 

18-6 potential, with a value of e/k= 157.5, the 
theoretical maximum inversion temperature is 
770 K, giving a deviation of about 3 percent from 
the value calculated by eq (64). 

The significance of the inversion curve as a test 
for the equation of state (39) may be seen by noting 
thOat the inversion curve eq (64) involves derivatives 
of the equation of state. As illustrated in figure 20 
and as previously mentioned, the deviations be· 
tween the calculated inversion curve and the data 
from other sources are relatively small. Therefore 
it may be concluded that the geometric slope of the 
physical thermodynamic surface is adequately 
described by the equation of state (39). 

14. Specific Heats 
The specific heats of a gas at constant pressure 

and constant volume are given by 

(65) 

and 

(66) 

The Cp and Cv illustrated in figures 21 and 22 

. (as) (as) were calculated by formmg the aT v 0 and aT p 

numerically with (tlS/tlT)v and (tlS/tlT)p, where tlT 
was 0.005 K and tlS was calculated using the equa· 
tions given in section 10. These numerically ob· 
tained values were compared with values calculated 
from continuous analytical expressions derived 
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FIGURE 21. Specific heat at constant pressure calculated by numerical method. 
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from the equation of state (39). Such comparisons 
were made in all regions of the P-V-T surface 
except the compressed liquid region where the 
continuous expressions were not possible. The 
differences in the specific heats obtained by the 
two methods were on the order of 10- 5 of the total 
value. 

Both the Cv and the Cp diagrams omit the isobars 
above 100 atm between 130 and 150 K, i.e., areas 
enclosed by dashed boxes (figs 21, 22). The specific 
heats calculated from the equation of state in this 
range of temperature and pressure exhibited erratic 
behavior inconsistent with the rest of the surface. 
This behavior is probably caused by the adjustments 
made to the entropy and enthalpy values for the 
saturated liquid (see sec. 10). 

Comparisons were made between experimental 
specific heat data and values calculated from the 
equation of state. With the exception of the low 
temperature compressed liquid region and the 
critical region the agreement was good. The devia· 
tions were usually less than 5 percent and averaged 
about 1 percent. Experimental Cv specific heat 
data near the critical point such as the data of 
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Voronel et al. [54] disagree with the values cal· 
culated from the equation of state by as much as 
53 percent with an average deviation of 40 percent. 
The only experimental specific heat data available 
for the compressed liquid region below no K were 
those of van Itterbeek et al. [9]. The agreement 
between these data and values calculated from the 
equation of state was poor, the average deviation 
being about 15 percent, in Cv and 5 percent in Cpo 
However, these experimental data appear to have 
SO\1le internal inconsistency, and it is difficult to 
assess their reliability. Unfortunately no other 
experimental data exist in this region, leaving it 
somewhat in doubt. Good agreement was obtained 
between the calculated specific heats and the 
experimental data of Lestz [55]. These data were 
taken at tern peratures of 273.15 and 303.7 K at 
pressures to 12 atm. The maximum deviation be­
tween calculated values and these data for both 
Cp and Cv is 0.37 percent. The data of Michels et al. 
[47] and Michels et al. [48] cover a temperature 
range from 133_15 to 423.15 K with pressures to 
2423 atm. Excluding the critical region and the 
compressed liquid where deviations ranged to 9 
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FIGURE 22. Specific heat at constant volume calculated by numerical method. 
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percent, the maximum deviation between experi­
mental and calculated Cv's was 6.4 percent at 2423 
atm and 398.15 K. The maximum Cp deviation for 
this group of data was 5.8 percent at 163.15 K and 
70 atm. The specific heat data of Walker [11] were 
also compared with values calculated from the 
equation of state. The agreement between these data 
and the calculated values was slightly worse than 
the agreement obtained with Michels' data. How­
ever, the reliability of these data is believed to be 
less than that of Michels. 

Comparison of the specific heats calculated here 
and those tabulated by two other correlations re­
vealed satisfactory agreement. The Cp's tabulated 
by Hilsenrath et al. [27] for temperatures of 240 K 
and above agree with the values calculated here to 
better than one percent. However, the Cp's tabu­
lated by Hilsenrath et al. [27] for temperatures below 
240 K do not agree as well, especially at the high 
pressures. For example, at 200 K and 100 atm, the 
disagreement is about 10 percent in Cp while the 

value tabulated by Din [31] for this temperature and 
pressure agrees with this report to within 1.5 per­
cent. The average deviation in Cp between this 
report and Din [31] is about 1.5 percent, which is 
much greater than the average deviation between 
this report and Hilsenrath et al. [27]. 

It is difficult to formulate a single equation of 
state which predicts valid P-V-T values over the 
liquid, vapor and critical point regions, and which 
also permits accurate calculation of specific heats. 
The specific heat of a fluid is a function of the 
second derivative of the equation of state. As 
pointed out in section 8, slight systematic devia­
tions between the experimental P-V-T surface and 
the equation of state become magnified when deriva­
tives are taken. The effect of these deviations 
becomes greater as higher order derivatives are 
taken and, in the region of the critical point where 
the equation of state has the largest systematic 
deviations, the second order derivatives contribute 
large errors to the specific heats. 

15. Conclusions 

An equation of state has been developed which 
represents the experimental P-V-T data for both the 
liquid and vapor phases, with a consistent transition 
from the low temperature-high density region to 
the low density region. Since some of multiple data 
sources are inconsistent where they overlap, it is 
difficult to assign an overall "figure of merit" for the 
adequacy of the equation of state as compared to an 
experimental P-V-T surface. In general, the equa­
tion of state represents the different sources of 
experimental data to within the accuracy of the 
data except in the region of the critical point. Nu­
merous deviation plots have been presented so that 
direct comparisons between the equation of state 
and each source of experimental data can be made. 

In the region of the critical point, the equation of 
state has a mean density deviation of about one per­
cent and shows a systematic trend which can be 
attributed to the form of the equation of state. The 
critical point region has isotherms which undergo 
large changes in their first and second derivatives. 
Therefore, it is difficult to represent this critical 
point region and, at the same time, represent the 
liquid and vapor regions with a single analytic equa­
tion of state. The difficulty near the critical point is 
magnified when considering the apparent diver­
gence of the specific heat at constant volume (which 
is related to the second derivative of the equation 
of state) which was found experimentally by Voronel 
et al. [54] and discussed by Levelt-Sengers and 
Vicentini-Missoni [56]. 

Attempts have been made to include the non­
analytic character of the equation of state, as 
discussed by Leve]t-Sengers and - Vicentini­
Missoni [56]. However, at the present, insufficient 
progress has been made in including this non­
analytic behavior in equations of state which are 
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explicit in pressure or density and cover a large 
range of the P-V-T surface. 

Recent comments by Heller [57] and Pings and 
Teague [58] indicate that the critical temperature 
(and hence the critical pressure) stated earlier in 
this work may be slightly in error. However, defini­
tive experimental verification of these comments 
is not yet available and the values for the critical 
temperature and pressure stated in this work appear 
to be the best estimate which is available at this 
writing. 

Since the development of the equation of state, 
some new data on the P-V-T measurements of 
liquid argon have been published by van Witzen­
burg and Stryland [59]. These data cover the region 
from about 95 to 150 K at pressures from about 100 
to 1900 atm. A comparison was made between these 
data and the values of density predicted by the equa­
tion of state. For the 38 points at 115 K and below, 
the mean density deviation was 0.15 percent, with 
one point having a maximum deviation of 0.5 per­
cent. For the 126 points from 120 to 150 K, the mean 
density deviation was 0.3 percent with three points 
having a maximum deviation of 0.5 percent. Van 
Witzenburg and Stryland state that there were two 
small regions where their data could be compared 
with other investigators. One of these comparisons 
shows that the density values of van Itterbeek et al. 
[9] were consistently higher than van Witzenburg 
by about 0.4 to 0.5 perce.nt. Comparison of the same 
van Itterbeek data with the values predicted by 
the equation of state developed here shows that 
the densities of van Itterbeek are consistently 
higher by about 0.2 to 0.3 percent. The second com­
parison which could be made shows that six data 
points of Michels et al. [1] had densities which were 
about 0.25 percent lower than van Witzenburg . . 



Comparison of the same six points of Michels 
with the values predicted by the equation of state 
developed here shows a mean density deviation of 
0.03 percent. 

An abundance of thermodynamic data for argon 
is available in the literature. However, it is only 
quite recent that investigators have begun to ap­
preciate the inherent difficulties associated with 
obtaining good data in the region of the critical point. 

New techniques are being utilized to investigate 
critical point behavior, and older techniques are 
being updated to include the high precision which 
is necessary to describe this region. Theoretical 
studies are being made to try to understand the 
behavior in this interesting region. But much more 
experimental and theQretical work has yet to be 
done before a complete and definitive description 
of this critical region can be obtained. 
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